Size Dependence of Nanoparticle Magnetization
نویسندگان
چکیده
منابع مشابه
Explaining the Size Dependence in Platinum-Nanoparticle-Catalyzed Hydrogenation Reactions.
Hydrogenation reactions are industrially important reactions that typically require unfavorably high H2 pressure and temperature for many functional groups. Herein we reveal surprisingly strong size-dependent activity of Pt nanoparticles (PtNPs) in catalyzing this reaction. Based on unambiguous spectral analyses, the size effect has been rationalized by the size-dependent d-band electron struct...
متن کاملSimulation of Magnetization Switching in Nanoparticle Systems
Magnetization reversal in magnetic nanostructures is investigated numerically over time-scales ranging from fast switching processes on a picosecond scale to thermally activated reversal on a microsecond time-scale. A simulation of the stochastic Landau-Lifshitz equation of motion is used as well as a time quantified Monte Carlo method for the simulation of classical spin systems modeling magne...
متن کاملInfluence of Size on the Melting Temperature of Metallic Nanoparticle
In This paper, the effect of size on melting temperature of metallic nanoparticles (Au, Pb and Bi) is theoretically simulated and explained. In this regard, the cause of difference in various experimental data is introduced, which is the difference between nanoparticles’ grain Gaussian distribution. This volume-depended model with the help of the Gaussian distribution can descri...
متن کاملMagnetization of nanoparticle systems in a rotating magnetic field.
The investigation of a sizable thermal enhancement of magnetization is put forward for uniaxial ferromagnetic nanoparticles that are placed in a rotating magnetic field. We elucidate the nature of this phenomenon and evaluate the resonant frequency dependence of the induced magnetization. Moreover, we reveal the role of magnetic dipolar interactions, point out potential applications, and reason...
متن کاملDetermining the size and shape dependence of gold nanoparticle uptake into mammalian cells.
We investigated the intracellular uptake of different sized and shaped colloidal gold nanoparticles. We showed that kinetics and saturation concentrations are highly dependent upon the physical dimensions of the nanoparticles (e.g., uptake half-life of 14, 50, and 74 nm nanoparticles is 2.10, 1.90, and 2.24 h, respectively). The findings from this study will have implications in the chemical de...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Magnetics
سال: 2017
ISSN: 0018-9464,1941-0069
DOI: 10.1109/tmag.2016.2601019